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Rased on the complete Stokes wave model with th_ bias term at,dusing a simple
maoninq approach and an iteration solution method, we established a formula for the
_oint probability density fuction of the surface slope-elevation of a nonlinear ran-

"i dom wave field. The formula requires three parameters to define the whole density
function: the rms surface elevation and slope values and the significant slope. This

_. model represents the dynamics of the wave in a more direct way than the Gram-Charlier
approximation. Based on this new statistical model and laboratory experiments, form-
ula and numerical values of EM bias and dynamics bias are derived. The results inidi-

_'_ cate that various biases should be considered seriously if accuracy of the altimeter
¢ measurement is required in centimeter range.

1. INTRODIICTION
_

_ Wind waves are always random. The randomness is the result of the generating
forces as well as the consequence of the dynamic processes in wave evolution which
induce different kinds of instabilities. Consequently, the onJy meaningful descrip-
tions of the wind wave fields are the various statistical measures; among them the

_C probability density functions of the surface elevation and slope are the most basic
ones. With the recent development of active microwave remote sensing the techniques,

:_ the need for the statistical description of the ocean becomes more urgent, for the
-! return signals of the radars are various convolution of radar signals and the ocean
;_ surface and these return signals are our only information sources. Successful extrac-
. tion of the qeoqphysical parameter, therefore, depends critically on our knowledge

of the ocean surface statistical properties. For the remote sensing applications,
the most important statistical measure is the joint probability density function

; of the slope and elevation of the ocean surface.

; This specific probability density function is necessary for evaluatinq the back-
scattering equation for a near nadir-looking radar as stated by Barrick (1972), Brown
(197B), Valenzuela (Ig78), and Jackson (1979). Unfortunately, due to the nonlinear

_ nature of the ocean waves, a realistic functional form has been elusive. Faced with
this difficulty, past investigators have adopted a simple model that assumes all the

4_ statistical processes to be Gaussian and joint Gaussian. With thls assumption, the
statistical properties of the ocean surface become totally independent of the control-
linq dynamic processes. Consequently,the treatment of the ocean surface statistics
is no different from any other random Gausslan process such as the noise of electronic
circuitry. Indeed, most of the p-esent statistical results used in describing the
ocean surface can be traced to the classical set of papers by S. O. Rice (1944, 1945
and 1948), with certain extensions into two dimensions by Longuet-Higgins (1957, 1963,
for example). Because the randomness of the ocean surface wave is the consequence
of the generating forces as well as the controlling nonlinear dynamic processes which
include various types of instabilities (see, for example, Phi111ps, 1977 and Yuen
and Lake, 1982), the resulting surface geometry can not be adequately described by a
linear superposition of statistically independent events. Thus the statistical pro-
cess can not be Gausslan. Therefore, any results based on a Guassianassumption, :
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• though perhaps useful for some qualitative purposes, do not satisfy the need of our
present and future enqineering and remote sensing requirements.

_, The nonlienar effect nf _ravity waves on statistical properties of the wave field
has been investigatedfirst by Longuet-Hiqgins (1963),who treated the surface statis-

: tics as nearly _dussian and represented it by a Gram-Charlier series in which the
skewness nf the surface elevation was determined through rigorous dynamic equations.

. Thi_ analysis was later extended by Jackson (1979) to the joint probability density
_ distributio_ of slope and elevation These results represented a major breakthoughm

in the non-Gaussian statistical description of the ocean surface. Successful as they
were, there are certain shortcoml,;gs: the dpproximation gives negative density values
and it requires higher moments to implement. These shortcomings put a limitation the
applications of the results.

Recently we established a mapping technique to model the non-Gaussian process of
= the ocean surface. This technique was first used by Tayfun (1980), and was later suc-

cessfully modified and applied to the non-Gaussian processes described by the nonlin-
ear surface wave elevation density fbnction (Huanq et al, 1933) and joint slope and
elevation density function (Huang et al. 1984). In this paper we will summarize the
technique used i,iconstructing the non-Gaussian density functions and discuss the
specific applications to the remote sersing techniques.

2. THE NEW STAFISTICALMODEL

The new statisticalmodel for a nonlinear deep water w_ve field is based on the
Stokes expansion, i.e.

a_k 3a3k2
_=_I _2 k + o. cos O(._ T cos zo(. + _ cos 3,)(+,.,8 (2.1)

Let us start by considering the linear Gaus;in case for which the sea surface can be

represented hy
i

¢I = a cos x' (2.2)

with x as the phase function

x = kx - nt +¢,

where k is the wave number, n is the frequency and _ is an arbirary phase shift uni-
form3y distributed. It is well known that if a is Rayleight, the K1 is zero-mean
Gaussian (see, for example, Papoulis, 1965). For the same amplitude and phase func-

• tion,

_2 : a sin x , (2.3) ;

__i is also Gausslan. Furthermore,r,la d {2 are statistically orthogonal to each other.J
f [

( Bas_.don cl and c2, we can define the normalized random variables I

z,- = J (2.4)' I

_ wlth the overbar indicating mean quantity, and the joint probability of ZI and Z2 Is
simply i
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I
p(z,,z_)= ± e,p{--_(z,_.z_ )} (2.s)

If the surface wave prefile is represented by the Stokes wave, a normalized zero-
mean random variable can be defined as

R = (__ _),/2- T " (2.6)
where _ is the standard deviation of the surface elevation. From _,..I)we can also
get the surface slope

_3X3 S,',30( .... (2.7){x " - (_k st'n0(- _.ZkZs?n 2X 8

Again, we. can define another normalized zero-mean random variable from (2.?) as

;'-2/,/z (2._)

In terms of ZI and Z2, n and _ become

in which

N = ( I.-,.,_z§z )Yz,

M = (' �Ô�˜�˜�'/z,
and § is the significant slope of the wave field defined as

§ = (_-_)9_/_,

with X =2_/k.

Since wo know the joint densitj function of ZI and Z2, it is easy to write the
.|ointdensity function of any two functi._ of ZI, and Z2 through a ,nappingtechnique
known as the fundamental theorem of probability (Papoulis, 1965), i.e.

Z,, 22 (2.10)
l)(z"zzldZ'dZ'=iPlZ'(q'_)'Z"(1'glIJ(rl'I )dldg '

in which J() is the Jacoblan of the transformation.

Following this rw_thod,Huanq et al. (1984) obtained the .iolntslope-elevatlon
density f0mction as:

i_(q,_)= z.--,_-
Nz_l I z

•,,.xp-{ ._ [('7q'/4-(_nz*_+ qMzq_S=/4N,)NZl z _.l

Statlstically,tt_eJoint specular point and elevatlon (:Istributlonis the conditional
distribution of

'P( (, I _r, _,o ). (z._;_)
For a long crested wave fteld or a narrow band of energy spread case,

t
I
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Thus a good approximationof the specular point distribution can be obtained by simply
setting r =0 in (2,11). Hence, in terms of the normalized variable,

b

"P(ql S:o) = 2Z_ l-4_ck + (--_-- 4)_Zk _

•e_p -_ "17 _4-61z+1)N2_kz

where _ is the normalized factor to guarantee

.I  (ql%:o)al :
-(1)

' From equation (2.II) and 2.14) we can see that the density functions are obvious-
ly skewed wlth respect to n. This skewness is caused by the harmonic distortion of
the wave profile described by Stokes expansion. Comparison between the throretical
and experimental results have been presented by Huanget a]. (1983, 1984). The agree-
ments are all good.

3. REMOTE SENSING APPLI_TIONS

A particularly interesting aspect of the specular point density functions is the
: location of the mean. More specifically, the difference between the mean of the spec-
: ular point density and the mean of the surface elevation density functions. This

difference is the critical electromagnetic bias (Jackson, 197g; Walsh et al., Ig_3),
for the mean tea surface measured by any nadir looking electromagnetic_ev-Tceis not
the true mean out the mean of th6 reflecting facets or the specular points. Based
on our observational data, the mean is determined and plotted as a function of the

, _igniflcant slope in Figure 3.1. The data show an almost linear increasing of the
blas. The mean value of the theoretical model can be calculated by the ratio of the
first moment to the zeroth moment of the density function. The value of the bias Is
the difference between the corresponding values of the mean in specular point density
and elevation density functions. The numerical value calculated based on (2.14) is
also given In figure 3.1. Although they do not exactly coninclde, the trend Is
unmlstakeable. Better model wlth more realistic wave profile In two-dimenslon may
be needed.

Another aspect of the nonlinear effects in the wave proflle is the non-zero
mean - the deviation of the local mean surface under waves from the undisturbed calm
surface. The existence of thls non-zero mean in a nonlinear wave train _ _ been shown
by Stokes (1880), Raylelgh (1917), De (1955) and, more recently, Schwartz (1974) and
Lnnguet-Higglns (1915). In the past, the terr aZk/2 In equation (2.1) has been treated

- as a negligible constant In all wave studie_. I[ Is discarded by simply shlftlnq
_ the coordinate system up by the exact amount of a_k/2. Thts ts permissible as long
_" as our interest tn the oscillatory part of the motion. But the coordinate shifting

ts no longer permissible for our present interest because the amount shifted ts
precisely the dynamic sea state bias which could have far reaching consequence tn

;'- the accurate determination of the mean sea surface using an altimeter.

The existence of thts non-zero mean tn a nonlinear wave train can be explained
by mass balance tn the wave motion. It has been shown by Stokes that a non-zero

_,. mean mass transport always accompanies the wave motion. For deep water waves, tht;
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v__loci ty is

". _. o_n k ez_z•- = 13.1)

where Z is the vertical position of a p6rticle. The rate of total mass transport
• throuqh any vertical section is given by

q = S° _n k e,_"d= = _n/_ (3.2)

Thp surface elevation change caused by this mass transport can be calculated as

: "K,, " <_T/_ , (3._)

in which T and _ are the wave period and wave length respectively. Using the defini-
tior,of wave number and frequency, one can easily show the equivalenc_ between (3.3)
and t,e constant term in (2.1).

For a random wave field, the Stokes drift is given by Huang (1971) as

fT- ,% =" I 2nk X(k.t.,n) _.21KIZck_drt (3.4)

Therefore, the rate of the total mass transport _s ._

. _° (3._)Q =: j _;L dZ !
and the hlas is "_" !

zl_lz i
t

-w l(_ I

(3._)

(

in which X(k,n) is ; _:tional wave n_mber frequency spectrum. In order to evalu- {
ate (3.6), a speci ,,:i c ,um form has to be adopted. Since the quantity souqht here ,_
in a scaler,Ah, we c_n reduce (3.6) by using the dispersion relationship to eliminate
k and reduce Y(k,n) to a simple frequency spectrum. Then adopting the simplified ,
Wallops spectrum model (Huang et al., 1981), we obtain

Z_Kw : ZqI( _)Vz § (.m-,;/(m-3) , (3.7) :l
,{

where m is a :Imple function of the significant slope, §, defined by
i
|

,,,,= I ( >'/ :' l ,
and ;'I

)V, i,.. /;,.,
with Xn as the wave lenRth of tile wave having a frequency at the peak of the spectrum,

no" _,
If the significant wave hetqht, H1/3, is used a:; in most practical applications, (3.7)

. can be written as

,*" )

le' z
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The typical value of § in the open ocean is around 0.01, which gives the value of m
around 10; the dynamic sea state bias, _h, would be around 1.5% of the significant
wave height. During a storm, the § value could reach 0.02 as an upper bound, and then

Ah would be a_ hiqh _s 3% of HI/3. For the sea state dominated by swell, however,
the dynamic bias can almost be neglected because § would be of the order of 0.0(]Ior
less.

As an estimate of the maqnitude of this bias, we use the empirical formula given
by Neumann and Pierson (1965), then

HI/3 = 2.12xI0-2 W2 (3.g)

for a fully developed sea. Under such conditiors the phase velocity of the energy
containing waves equals the wind spe_d. Thus the sea state bias can be written as

_w = 2.7_ x10-4 _V 2 (w_-,)/(,_-_ . (3.10)

This value is plotted in Figure 3.2 For all wind speed, the high sea s_ate this
bias is not negligible.

4. OONCLUSION

In this study, we summarized the non-Gaussian statistial models based on Stokes
Wave expansion. The few statistical model indicates the existence of skewness which
is the cause o_ the EM bias in the remote sensing application. Furthermore,the exis-
tence of the non-zero mean in Stokes expansion which contributed to the Skewness can
also cause a dynamic bias. The magnitudes of hoth bias terms are estimated. For
future altimeter applications, we should seriously consider the correction of these
blcses.
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